Spatiotemporal Dynamics and Reliable Computations in Recurrent Spiking Neural Networks.
نویسندگان
چکیده
Randomly connected networks of excitatory and inhibitory spiking neurons provide a parsimonious model of neural variability, but are notoriously unreliable for performing computations. We show that this difficulty is overcome by incorporating the well-documented dependence of connection probability on distance. Spatially extended spiking networks exhibit symmetry-breaking bifurcations and generate spatiotemporal patterns that can be trained to perform dynamical computations under a reservoir computing framework.
منابع مشابه
Learning recurrent dynamics in spiking networks
Spiking activity of neurons engaged in learning and performing a task show complex spatiotemporal dynamics. While the output of recurrent network models can learn to perform various tasks, the possible range of recurrent dynamics that emerge after learning remains unknown. Here we show that modifying the recurrent connectivity with a recursive least squares algorithm provides sufficient flexibi...
متن کاملLearning Universal Computations with Spikes
Providing the neurobiological basis of information processing in higher animals, spiking neural networks must be able to learn a variety of complicated computations, including the generation of appropriate, possibly delayed reactions to inputs and the self-sustained generation of complex activity patterns, e.g. for locomotion. Many such computations require previous building of intrinsic world ...
متن کاملNonlinear Dynamics Emerging in Large Scale Neural Networks with Ontogenetic and Epigenetic Processes
We simulated a large scale spiking neural network characterized by an initial developmental phase featuring cell death driven by an excessive firing rate, followed by the onset of spike-timing-dependent synaptic plasticity (STDP), driven by spatiotemporal patterns of stimulation. The network activity stabilized such that recurrent preferred firing sequences appeared along the STDP phase. The an...
متن کاملNeural Dynamics as Sampling: A Model for Stochastic Computation in Recurrent Networks of Spiking Neurons
The organization of computations in networks of spiking neurons in the brain is still largely unknown, in particular in view of the inherently stochastic features of their firing activity and the experimentally observed trial-to-trial variability of neural systems in the brain. In principle there exists a powerful computational framework for stochastic computations, probabilistic inference by s...
متن کاملRecurrent spatiotemporal firing patterns in large spiking neural networks with ontogenetic and epigenetic processes.
Neural development and differentiation are characterized by an overproduction of cells and a transient exuberant number of connections followed by cell death and selective synaptic pruning. We simulated large spiking neural networks (10,000 units at its maximum size) with and without an ontogenetic process corresponding to a brief initial phase of apoptosis driven by an excessive firing rate mi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 118 1 شماره
صفحات -
تاریخ انتشار 2017